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Republic of Germany 

Sternheimer ionic antishielding factors, yo~, have been calculated for F - ,  Cl - ,  
Br - ,  and I -  in crystals using the Watson model within the nonrelativistic 
Hart ree-Fock approximation and the perturbation numerical procedure. The 
free ion calculations of ~ using the Hart ree-Fock wave functions have also 
been carried out in order to ascertain the solid-state effects. The free ion values 
of  ~,~o change from -22.2 ,  - 55.1, - 135.106, and -248.1 to - 10.3, -34 .8 ,  
-75 .6 ,  and - 148.7 in solids for F - ,  CI- ,  Br- ,  and I - ,  respectively. A major 
part  of the discrepancy between the free ionic ~| values based on the Hartree-  
Fock and Hartree-Fock-Slater  wave functions, as noted by the previous 
workers, is shown to arise from an inaccurate description of the self-interaction 
potential in the conventional Slater exchange approximation. 
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1. Introduction 

The Sternheimer quadrupole ionic antishielding factor [1 ], ~,~, plays an important 
role in the theory of electric field gradients in ionic solids, where it is conventionally 
assumed that 

eq = (1 - )%)eq~on. (1) 

The negative halogen ions F - ,  CI- ,  Br- ,  and I -  are expected to undergo significant 
radial contraction in their electronic charge densities on going from free to the 
crystalline state. Earlier calculations of),~, which account for the solid state effects, 
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may be grouped into the following two categories: a) the calculations [2, 3] which 
are based on the Hartree-Fock (HF) wave functions for the ground state followed 
by one of the less accurate variation-perturbation methods of Langhoff et al. [4] to 
calculate ~,~, and b) the calculations wherein [5] ~,~ is obtained using the more 
accurate perturbation-numerical (differential equation, DE) approach due to 
Sternheimer [1] but with ground state functions less accurate than the HF wave 
functions, usually in terms of the treatment of exchange potential. The purpose of 
this paper is to report the results of our calculations of y~ for F - ,  CI-, Br-,  and 
I -  in ionic solids using the HF wave functions and the DE method, respectively. 
The Watson model [6] was used to simulate the electrostatic potential due to the 
crystalline lattice in ionic solids. Further, we have also attempted to understand the 
cause of the large discrepancy, noted earlier [5, 7], between the free ion calculations 
of y= based on the Hartree-Fock-Slater [8] (HFS), and HF wave functions, 
respectively. In particular, we have studied the effect of treating the self-interaction 
potential accurately within the Slater-like exchange approximation in atoms as 
proposed by Gopinathan [9]. 

In Sect. 2 we describe in brief the method of calculation adopted in the present 
work. The details about the perturbation-numerical approach and the improved 
approximation to the HF exchange potential are available in Refs. [1] and [9] 
respectively. In Sect. 3, we present and discuss the results of our calculations. 
Finally, the main conclusions are summarized in Sect. 4. 

2. Calculations 

The one-electron HF equations, in Rydberg units, can be written as 

[fl + Vc(r) + V~(r) + Vex(r)]ui(r) = E~u~(r), (1) 

where u~'s are the spin orbitals with occupancy n~;fl = - V  2 - 2Z/r; Vo, V~, and 
Vex respectively represent the Coulomb potential, self-interaction, and the character- 
istic HF exchange-potential for the ith electron and are defined by 

f , t r t Ve(r) = ~ nj uj (r )uj(r )g~,dr (2) 

V~(r) = - n ,  ui (r )u,(r )g~r,dr (3) 

and 

Vex(r) = - ~_,j** (nj f u, (r)UJu,(r)u,(r)(r )uj(r)u,(r)grr,dr ) (4) 

In the HFS approximation, 

V~ + Vex = -6Ce*plra(r), (5) 

where ~ is the Slater exchange parameter, C = (3/4~r) 1Is, and the electronic density 
p(r) = Z n,u*(r)ui(r). One of the main drawbacks of the HFS approximation is 
that the potential in Eq. (5) vanishes at large r as against the correct HF limit of 
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-2/r as r - +  oo. This is due to the fact that Vs is under-estimated in the HFS 
approximation. In order to overcome this defect one usually employs the Latter 
tail-correction [10] in the HFS approximation. Using the characteristic properties 
of the Fermi-hole and assuming that the density varies linearly over the Fermi- 
sphere, Gopinathan [9] has derived that 

Ca (2p;(r)p_ 2ra(r) _ ~ap_si3(r) ~, niui(r)ui(r)p~(r)) Vex(r) = - 9 -~- 
spin 

with 

(6) 

~--(2=)21a(i+�89 3, (7) 

where n gives the number of electrons of a given spin. 

p; gives the total charge density, Oi, less the ith electron density. The use of Eqs. (6) 
and (7) lead to the correct asymptotic behaviour of(Vs + Vex) as r -+ oo, since the 
self-interaction is exactly evaluated for each orbital. Also, the theoretical values of 

rather than the empirical ones can be used in the calculations. The wave functions 
obtained from Eqs. (I), (5) and (6) will be respectively denoted by HF, HFS, and 
H F G  wave functions. 

In the Watson model [6] for ions in crystals, the electrostatic potential due to the 
crystalline lattice is realized by superimposing around a given ion, a uniformly 
charged hollow sphere carrying a total charge equal and opposite to the ion in 
question. The radius of the sphere rion, is taken as the Pauling ionic radius [11] of 
the central ion. Thus, the crystal-ion wave functions are generated self-consistently 
using the following additional potential, Vw, in Eq. (1), due to the Watson sphere, 

2rtion 
Vw - for r~ ~< rlon 

rlon 

_ 2nlon for r~ /> rlon. (8) 
ri 

The calculations of 7~o require the knowledge of the first-order perturbed wave 
functions, u'(nl--~ l'), due to the nuclear quadrupole moment and these are obtain- 
ed by solving the following inhomogeneous differential equation: 

[d z l'(,' + l) - l(l+ 1)+ 1 dZff(rnl)]u,(n,__~l,) = u(n')[~ - ~ 1 ~ ]  
+ r 2 "u(nl--~ ~ ' 

(9) 

where the unperturbed radial wave functions u(nl) satisfy the orthonormality 
conditions 

fo ~ u2(nl) dr = 1 (10) 
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and 

o ~~ u(nl)u'(nl ~ l') dr = 0. (11) 

Finally, y~o is calculated according to 

= ~ c(nl-~ l') u(nl)u'(nl---~ l')r 2 dr, (12) 

where the angular integrals corresponding to the various radial (l -- l ' )  and angular 
(l # l ' )  excitations have been calculated by Sternheimer [1]. The numerical methods 
o f  solving Eq. (9) and evaluating the various radial integrals have been described 

elsewhere [i21. 

The free ion wave functions for F -  and C1- have been obtained within the HFS 
and H F G  approximation respectively in order to estimate the extent of  disagreement 
between y| values based on the H F  and HFS wave functions arising f rom the 
incorrect description of  the self-interaction term in the latter. We have used a 
substantially modified Herman-Ski l lman program [13] with the option o f  
441-point mesh to generate the ground state wave functions within the H F G  and 
HFS approximations respectively. The a values for the H F G  approximation have 
been taken according to Eq. (7). The H F  wave functions for the free and crystal 
ions o f  F - ,  C1-, B r - ,  and I -  have been generated over the 441-point mesh using 
the analytic wave functions calculated by Paschalis and Weiss [3]. 

3. Results and Discussion 

The shellwise contributions to 7~ for the free ions o f  F -  and C1- using HF,  H F G ,  
and HFS wave functions are listed in Tables 1 and 2 respectively. Our total 7| 
values using H F  wave functions are - 2 2 . 2  and - 5 5 . 1  for F -  and C1- respectively 
which are in exact agreement with the (7~)0 values reported recently by Beri et al. 
[14] using the H F  functions o f  Clementi et al. [15]. The 7o values based on HFS 
wave functions are known [5, 7] to be nearly twice as large as the corresponding 

Table 1. The shell-wise contributions to 7~o for the free 
F-  ion using the Hartree-Fock (HF), modified Hartree- 
Fock-Slater (see Eqs. 6-7 of text) (HFG), and Hartree- 
Fock-Slater (HFS) wave functions, respectively 

Perturbation HF HFG HFS 

It --> d 0.079 0.080 0.078 
2s ----> d 0.324 0.316 0.313 
2p:+f  0.512 0.456 0.510 
Tot. Ang. 0.92 0.851 0.901 
2p --~ p -- 23.022 - 15.773 -- 41.998 
Tot. Rad. - 23.022 - 15.773 - 41.998 
Total - 22.106 - 14.921 - 41.098 
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Table 2. The shell-wise contributions to ~,~o for the free 
C1- ion using Hartree-Fock (HF), modified Hartree- 
Fock-Slater (HFG), and the HFS wave functions, 
respectively 

Perturbation HF HFG HFS 

ls -+ d 0.041 0.041 0.041 
2s ~ d 0.119 0.119 0.119 
3s --+ d 0.443 0.381 0.381 
2p--+f 0.159 0.155 0.156 
3p --+f 0.719 0.658 0.701 
Tot. Ang. 1.481 1.345 1.398 
2p --+p - 1.522 - 1.528 - 1.5389 
3p --~ p - 55.027 - 47.422 - 81.903 
Tot. Rad. - 56.549 --47.513 - 83.442 

- 55.068 - 46.028 - 82.0445 

HF estimates. As is evident from the results in Tables I and 2, the accurate treat- 
ment of self-interaction in the HFG approximation substantially improves the 7'~ 
values within the Slater-like exchange approximation. For F - ,  the HFG wave 
functions result in 7'~ = - 15 to be compared with the HF and HFS estimates of  
- 2 2  and - 4 1  respectively. Similarly for CI-,  the HFG, HF, and HFS estimates 
of 7'| are - 4 6 ,  - 5 5 ,  and - 8 2  respectively. We therefore conclude that the major 
part of discrepancy noted previously between the 7'| results based on HF and HFS 
wave functions is due to the inaccurate treatment of self-interaction (see Eq. (3)). 
The numerically smaller magnitudes of 7'~ obtained within the H FG approximation 
are due to the overemphasis of the exchange potential for the outer orbitals. 
Nevertheless, with respect to the calculations of 7'| the nonlocal HFG potential 
provides a significantly improved approximation to the HF potential as compared 
to the more popular HFS potential without any additional computing efforts. 
Similar conclusions have also been obtained in the recent calculations of spin 
densities [9] in 3d ions. It would be worthwhile to try HFG wave functions in the 
calculations of polarizabilities [16] and of hyperfine interaction constants [17] in 
alkali atoms. 

The net y= results for F - ,  CI- ,  Br- ,  and I - ions in the free and solid state, obtained 
in the present work using HF wave functions, are given in Table 3. For comparison 
we have also listed there the 7'| values for these ions obtained so far by the other 
workers. The crystal-ion 7'~ values, given in column 4 in Table 3, pertain to the 
radius of the Watson sphere equal to the Pauling ionic radius. Due to the presence 
of the stabilizing potential for the ion in the solid, the total radial charge density 
undergoes a net contraction relative to the free ion case. This amounts to nearly 
40-5070 reduction in 7'~o as the halogen negative ions are stabilized in ionic solids. 

In Table 4 we have studied the variation of T'~ for F -  and C1- as a function of the 
radius, rlon, of the Watson sphere. Near the Pauling radius (shown as starred), the 
7'~ values do not change very significantly due to the small changes (<0.1 A) in 
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Table 3. Total 7~o values for the free ions and ions in crystals using HF wave functions. The 
crystal ion values correspond to the Pauling ionic radius of 1.33, 1.81,1.95 and 2.16/~ for F -  
CI- ,  Br-  and I - ,  respectively 

Free ion Crystal ion 
This This 

Ion work Others work Others 

F -  -22.106 -66.861 -23.22,  -25.71,  -21.11~; -10.306 
-22.53 b, -23.03,  -22.15,  -22.12,  
- 2 2 . 0  ~ 29.88 d, - 37.61% -41.109r;  
-42.190g, 19.29 h 

C1- - 55.068 -53.91 ~ - 101.116% - 82.047~; -34.801 
-83 .50  ~, -56.58 h, -56 .6  ~, -49.28J;  
-78 .3k ;  -63.211 

Br-  -135.106 --123.0b; --244.3"; --195.10~; --210.0~; --75.586 
- -  140.83h; --99.0J; -- 100.0 ~ 

I -  --248.052 --331.633f;--396.10~;--178.75~;--175~;  --148.710 
- - 1 3 8 . 4  ~ 

- 14.583 r, 
- 1 0 . 6 2  o, 
- 1 0 . 1 6 9  

-27 .04  ~, -54 .99  ~ 
-37.64 o 
-33 .64  p 
-97.424 f 
-73.419 
- 177.73U 
--141.91 p 

See Ref. [2] of text. 
b Sternheimer, R. M.: Phys. Rev. 132, 1638 (1963). 
c Langhoff, P. W., Hurst, R. P.: Phys. Rev. 139A, 1415 (1965). 
a Lahiri, J., Mukherji, A. : Phys. Rev. 153,386 (1967). These values include the electron-electron 

interactions to first order and also some higher order interactions. 
o Litt, C. : Phys. Rev. A7, 911 (1973). These values include the electron-electron interaction to 

first order. 
f See Ref. [5] of text. 

See Ref. [7] of text. 
See Ref. [14] of text. These values include the electron-electron interaction to first order. 
Sternheimer, R. M., Foley, H. M.: Phys. Rev. 102, 731 (1956). 

J Wikner, E. G., Das, T. P. : Phys. Rev. 109, 360 (1958). 
k Watson, R. E., Freeman, A. J.: Phys. Rev. 123, 521 (1961). 

Lahiri, J., Mukherji, A.: Phys. Rev. 155, 25 (1967). These values are similar in accuracy to 
those under " d " .  
Watson, R. E., Freeman, A. J. : Phys. Rev. 135A, 1209 (1964). 

n Sternheimer, R. M. : Phys. Rev. 159, 266 (1967). 
~ See Ref. [3] of text. 
P Schmidt, P. C., Weiss, A. : unpublished results. These calculations are based on method D of 

Ref. [4]. 

Table 4. Variation ofT| values for F -  and 
C1- as a function of the radius of Watson 
sphere, rion (in A units). The Pauling ionic 
radii have been shown as starred 

F -  C1- 
r~o~ y~ r~o~ 

-22.106 
1.40 -10.895 1.99 
1.36 - 10.554 1.81" 
1.33" - 10.306 1.63 

7~ 

-55.068 
-37.781 
-34.801 
-29.908 
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rlon. We recommend  the use o f  theoret ical  values of  - 1 0 ,  - 3 5 ,  - 7 6 ,  and  - 1 4 9 ,  

respectively, for F - ,  C I - ,  B r - ,  and  I -  in ionic solids with a conservative accuracy 
l imit  o f  ~ 15% due to the self-consistency effects [14]. Calculat ions  including such 
effects within the Wa t son  model  are present ly  in progress.  

4. Summary 

The Sternheimer  ant ishielding factors,  y~,  have been calculated for the negative 
halogen ions F - ,  C I - ,  B r - ,  and  I -  using H a r t r e e - F o c k  wave funct ions for the 
free ions and ions in solids. The Watson  model  for  ionic solids has been assumed as 
s imulat ing the electrostat ic  potent ia l  due to the crystal l ine lattice. In solids, the y~ 
values decrease in magni tude  by 4 0 - 5 0 ~  relative to the free ion. The serious 
discrepancy observed between the free ion calculat ions of  y~ for  the negative 
halogen ions using H a r t r e e - F o c k  and  H a r t r e e - F o c k - S l a t e r  wave functions,  has 
been found  to arise most ly  due to under-es t imat ion  of  self- interaction potent ia l  in 
the Slater exchange approx imat ion .  
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